Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nature ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720068

RESUMO

Anthropogenic change is contributing to the rise in emerging infectious diseases, which are significantly correlated with socioeconomic, environmental and ecological factors1. Studies have shown that infectious disease risk is modified by changes to biodiversity2-6, climate change7-11, chemical pollution12-14, landscape transformations15-20 and species introductions21. However, it remains unclear which global change drivers most increase disease and under what contexts. Here we amassed a dataset from the literature that contains 2,938 observations of infectious disease responses to global change drivers across 1,497 host-parasite combinations, including plant, animal and human hosts. We found that biodiversity loss, chemical pollution, climate change and introduced species are associated with increases in disease-related end points or harm, whereas urbanization is associated with decreases in disease end points. Natural biodiversity gradients, deforestation and forest fragmentation are comparatively unimportant or idiosyncratic as drivers of disease. Overall, these results are consistent across human and non-human diseases. Nevertheless, context-dependent effects of the global change drivers on disease were found to be common. The findings uncovered by this meta-analysis should help target disease management and surveillance efforts towards global change drivers that increase disease. Specifically, reducing greenhouse gas emissions, managing ecosystem health, and preventing biological invasions and biodiversity loss could help to reduce the burden of plant, animal and human diseases, especially when coupled with improvements to social and economic determinants of health.

2.
Proc Biol Sci ; 291(2014): 20231766, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38196367

RESUMO

Different populations of hosts and parasites experience distinct seasonality in environmental factors, depending on local-scale biotic and abiotic factors. This can lead to highly heterogeneous disease outcomes across host ranges. Variable seasonality characterizes urogenital schistosomiasis, a neglected tropical disease caused by parasitic trematodes (Schistosoma haematobium). Their intermediate hosts are aquatic Bulinus snails that are highly adapted to extreme rainfall seasonality, undergoing prolonged dormancy yearly. While Bulinus snails have a remarkable capacity for rebounding following dormancy, we investigated the extent to which parasite survival within snails is diminished. We conducted an investigation of seasonal snail schistosome dynamics in 109 ponds of variable ephemerality in Tanzania from August 2021 to July 2022. First, we found that ponds have two synchronized peaks of schistosome infection prevalence and observed cercariae, though of lower magnitude in the fully desiccating than non-desiccating ponds. Second, we evaluated total yearly schistosome prevalence across an ephemerality gradient, finding ponds with intermediate ephemerality to have the highest infection rates. We also investigated dynamics of non-schistosome trematodes, which lacked synonymity with schistosome patterns. We found peak schistosome transmission risk at intermediate pond ephemerality, thus the impacts of anticipated increases in landscape desiccation could result in increases or decreases in transmission risk with global change.


Assuntos
Schistosoma , Caramujos , Trematódeos , Animais , Lagoas/parasitologia , Tanzânia/epidemiologia , Análise Espaço-Temporal , Caramujos/parasitologia
3.
Ecology ; 105(2): e4221, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032549

RESUMO

Host heterogeneity can affect parasite transmission, but determining underlying traits and incorporating them into transmission models remains challenging. Body size is easily measured and affects numerous ecological interactions, including transmission. In the snail-schistosome system, larger snails have a higher exposure to parasites but lower susceptibility to infection per parasite. We quantified the effect of size-based heterogeneity on population-level transmission by conducting transmission trials in differently size-structured snail populations and competing size-dependent transmission models. Populations with greater proportions of large snails had lower prevalence, and small snails were shielded from infection by co-occurring large conspecifics. Furthermore, a fully dependent transmission model that incorporated body size in both exposure and susceptibility outperformed other candidate models considered. Incorporating traits such as body size, which are affected by and directly affect host ecology, into transmission models could yield insights into natural dynamics and disease mitigation in many systems.


Assuntos
Parasitos , Animais , Schistosoma , Caramujos/parasitologia , Interações Hospedeiro-Parasita
4.
PLoS One ; 18(12): e0291009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38109403

RESUMO

How do we feed the expanding human population without excessive resource depletion or environmental degradation? Recycling and recapturing nutrients could alleviate these challenges, especially if these strategies are robust to climate change. Co-cultivating rice with Azolla spp. in Asia has demonstrated high yields with reduced fertilizer inputs because Azolla fixes atmospheric nitrogen, limits nitrogen volatilization, recaptures and releases other nutrients, and suppresses weeds. While Azolla is distributed in Africa, this approach has not been widely implemented in African rice-farming. Characterizing the suitability of Azolla is critical in evaluating the potential for Azolla-rice in Africa. To do so, we synthesized 189 field and greenhouse studies from around the world that quantified temperature-dependent growth of A. pinnata and A. filiculoides and developed present and future climate suitability maps at the continental scale using mean temperatures under two Representative Concentration Pathways. Currently, most of Africa is suitable for Azolla with slight differences in regional suitability for each species. We project little change in the continent-wide suitability for both species, but anticipate a regional decline, particularly for A. filiculoides in the Sahel. Collaborating with farmers to validate these projections, evaluate the costs and benefits of Azolla-rice, and facilitate adoption of viable strategies can facilitate equitable food systems that also empower African farmers.


Assuntos
Gleiquênias , Oryza , Humanos , Agricultura , Ecossistema , Nitrogênio/metabolismo
5.
Ecol Lett ; 26(11): 2003-2020, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804128

RESUMO

Human activities have increased the intensity and frequency of natural stressors and created novel stressors, altering host-pathogen interactions and changing the risk of emerging infectious diseases. Despite the ubiquity of such anthropogenic impacts, predicting the directionality of outcomes has proven challenging. Here, we conduct a review and meta-analysis to determine the primary mechanisms through which stressors affect host-pathogen interactions and to evaluate the impacts stress has on host fitness (survival and fecundity) and pathogen infectivity (prevalence and intensity). We assessed 891 effect sizes from 71 host species (representing seven taxonomic groups) and 78 parasite taxa from 98 studies. We found that infected and uninfected hosts had similar sensitivity to stressors and that responses varied according to stressor type. Specifically, limited resources compromised host fecundity and decreased pathogen intensity, while abiotic environmental stressors (e.g., temperature and salinity) decreased host survivorship and increased pathogen intensity, and pollution increased mortality but decreased pathogen prevalence. We then used our meta-analysis results to develop susceptible-infected theoretical models to illustrate scenarios where infection rates are expected to increase or decrease in response to resource limitations or environmental stress gradients. Our results carry implications for conservation and disease emergence and reveal areas for future work.


Assuntos
Interações Hospedeiro-Patógeno , Parasitos , Animais , Humanos , Modelos Teóricos , Especificidade de Hospedeiro , Estresse Fisiológico , Interações Hospedeiro-Parasita
6.
Dis Aquat Organ ; 155: 193-198, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37767886

RESUMO

The pathogenic fungus Batrachochytrium dendrobatidis (Bd) is associated with drastic global amphibian declines. Prophylactic exposure to killed zoospores and the soluble chemicals they produce (Bd metabolites) can induce acquired resistance to Bd in adult Cuban treefrogs Osteopilus septentrionalis. Here, we exposed metamorphic frogs of a second species, the Pacific chorus frog Pseudacris regilla, to one of 2 prophylactic treatments prior to live Bd exposures: killed Bd zoospores with metabolites, killed zoospores alone, or a water control. Prior exposure to killed Bd zoospores with metabolites reduced Bd infection intensity in metamorphic Pacific chorus frogs by 60.4% compared to control frogs. Interestingly, Bd intensity in metamorphs previously exposed to killed zoospores alone did not differ in magnitude relative to the control metamorphs, nor to those treated with killed zoospores plus metabolites. Previous work indicated that Bd metabolites alone can induce acquired resistance in tadpoles, and so these findings together indicate that it is possible that the soluble Bd metabolites may contain immunomodulatory components that drive this resistance phenotype. Our results expand the generality of this prophylaxis work by identifying a second amphibian species (Pacific chorus frog) and an additional amphibian life stage (metamorphic frog) that can acquire resistance to Bd after metabolite exposure. This work increases hopes that a Bd-metabolite prophylaxis might be widely effective across amphibian species and life stages.

7.
Nature ; 619(7971): 782-787, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438520

RESUMO

Many communities in low- and middle-income countries globally lack sustainable, cost-effective and mutually beneficial solutions for infectious disease, food, water and poverty challenges, despite their inherent interdependence1-7. Here we provide support for the hypothesis that agricultural development and fertilizer use in West Africa increase the burden of the parasitic disease schistosomiasis by fuelling the growth of submerged aquatic vegetation that chokes out water access points and serves as habitat for freshwater snails that transmit Schistosoma parasites to more than 200 million people globally8-10. In a cluster randomized controlled trial (ClinicalTrials.gov: NCT03187366) in which we removed invasive submerged vegetation from water points at 8 of 16 villages (that is, clusters), control sites had 1.46 times higher intestinal Schistosoma infection rates in schoolchildren and lower open water access than removal sites. Vegetation removal did not have any detectable long-term adverse effects on local water quality or freshwater biodiversity. In feeding trials, the removed vegetation was as effective as traditional livestock feed but 41 to 179 times cheaper and converting the vegetation to compost provided private crop production and total (public health plus crop production benefits) benefit-to-cost ratios as high as 4.0 and 8.8, respectively. Thus, the approach yielded an economic incentive-with important public health co-benefits-to maintain cleared waterways and return nutrients captured in aquatic plants back to agriculture with promise of breaking poverty-disease traps. To facilitate targeting and scaling of the intervention, we lay the foundation for using remote sensing technology to detect snail habitats. By offering a rare, profitable, win-win approach to addressing food and water access, poverty alleviation, infectious disease control and environmental sustainability, we hope to inspire the interdisciplinary search for planetary health solutions11 to the many and formidable, co-dependent global grand challenges of the twenty-first century.


Assuntos
Agricultura , Ecossistema , Saúde da População Rural , Esquistossomose , Caramujos , Animais , Criança , Humanos , Esquistossomose/epidemiologia , Esquistossomose/prevenção & controle , Esquistossomose/transmissão , Caramujos/parasitologia , África Ocidental , Fertilizantes , Espécies Introduzidas , Intestinos/parasitologia , Água Doce , Plantas/metabolismo , Biodiversidade , Ração Animal , Qualidade da Água , Produção Agrícola/métodos , Saúde Pública , Pobreza/prevenção & controle , Organismos Aquáticos/metabolismo , Tecnologia de Sensoriamento Remoto
8.
bioRxiv ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37292923

RESUMO

Different populations of hosts and parasites experience distinct seasonality in environmental factors, depending on local-scale biotic and abiotic factors. This can lead to highly heterogenous disease outcomes across host ranges. Variable seasonality characterizes urogenital schistosomiasis, a neglected tropical disease caused by parasitic trematodes (Schistosoma haematobium). Their intermediate hosts are aquatic Bulinus snails that are highly adapted to extreme rainfall seasonality, undergoing dormancy for up to seven months yearly. While Bulinus snails have a remarkable capacity for rebounding following dormancy, parasite survival within snails is greatly diminished. We conducted a year-round investigation of seasonal snail-schistosome dynamics in 109 ponds of variable ephemerality in Tanzania. First, we found that ponds have two synchronized peaks of schistosome infection prevalence and cercariae release, though of lower magnitude in the fully desiccating ponds than non-desiccating ponds. Second, we evaluated total yearly prevalence across a gradient of an ephemerality, finding ponds with intermediate ephemerality to have the highest infection rates. We also investigated dynamics of non-schistosome trematodes, which lacked synonymity with schistosome patterns. We found peak schistosome transmission risk at intermediate pond ephemerality, thus the impacts of anticipated increases in landscape desiccation could result in increases or decreases in transmission risk with global change.

9.
J Wildl Dis ; 59(2): 217-223, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37074806

RESUMO

Disease control tools are needed to mitigate the effect of the fungal pathogen Batrachochytrium dendrobatidis (Bd) on amphibian biodiversity loss. In previous experiments, Bd metabolites (i.e., noninfectious chemicals released by Bd) have been shown to induce partial resistance to Bd when administered before live pathogen exposure and therefore have potential as an intervention strategy to curb Bd outbreaks. In the wild, however, amphibians inhabiting Bd-endemic ecosystems may have already been exposed to or infected with Bd before metabolite administration. It is therefore critical to evaluate the efficacy and safety of Bd metabolites applied postexposure to live Bd. We tested whether Bd metabolites administered postexposure would induce resistance, exacerbate infections, or have no effect. The results confirmed that Bd metabolites applied before pathogen exposure significantly reduced infection intensity, but Bd metabolites applied after pathogen exposure neither protected against nor exacerbated infections. These results reveal the importance of timing the application of Bd metabolites early in the transmission season for Bd-endemic ecosystems and emphasize that Bd metabolites prophylaxis may be a useful tool in captive reintroduction campaigns where Bd threatens the success of re-establishing endangered amphibian populations.


Assuntos
Quitridiomicetos , Micoses , Animais , Batrachochytrium , Micoses/prevenção & controle , Micoses/veterinária , Micoses/microbiologia , Ecossistema , Anfíbios/microbiologia
10.
Ecol Appl ; 33(2): e2767, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36268601

RESUMO

Invasive species cause environmental degradation, decrease biodiversity, and alter ecosystem function. Invasions can also drive changes in vector-borne and zoonotic diseases by altering important traits of wildlife hosts or disease vectors. Managing invasive species can restore biodiversity and ecosystem function, but it may have cascading effects on hosts, parasites, and human risk of infection. Water hyacinth, Eichhornia crassipes, is an extremely detrimental invader in many sites of human schistosome transmission, especially in Lake Victoria, where hyacinth is correlated with high snail abundance and hotspots of human schistosome infection. Hyacinth is often managed via removal or in situ destruction, but the effects of these strategies on snail intermediate hosts and schistosomes are not known. We evaluated the effects of water hyacinth invasion and these management strategies on the dynamics of human schistosomes, Schistosoma mansoni, and snails, Biomphalaria glabrata, in experimental mesocosms over 17 weeks. We hypothesized that hyacinth, which is inedible to snails, would affect snail growth, reproduction, and cercariae production through the balance of its competitive effects on edible algae and its production of edible detritus. We predicted that destruction would create a pulse of edible detrital resources, thereby increasing snail growth, reproduction, and parasite production. Conversely, we predicted that removal would have small or negligible effects on snails and schistosomes, because it would alleviate competition on edible algae without generating a resource pulse. We found that hyacinth invasion suppressed algae, changed the timing of peak snail abundance, and increased total production of human-infectious cercariae ~6-fold relative to uninvaded controls. Hyacinth management had complex effects on algae, snails, and schistosomes. Removal increased algal growth and snail abundance (but not biomass), and slightly reduced schistosome production. In contrast, destruction increased snail biomass (but not abundance), indicating increases in body size. Destruction caused the greatest schistosome production (10-fold more than the control), consistent with evidence that larger snails with greater access to food are most infectious. Our results highlight the dynamic effects of invasion and management on a globally impactful human parasite and its intermediate host. Ultimately, preventing or removing hyacinth invasions would simultaneously benefit human and environmental health outcomes.


Assuntos
Biomphalaria , Eichhornia , Animais , Humanos , Ecossistema , Biomphalaria/parasitologia , Schistosoma mansoni , Caramujos , Plantas , Cercárias , Interações Hospedeiro-Parasita
11.
Exp Parasitol ; 242: 108378, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36096192

RESUMO

Host and parasite traits that are sensitive to environmental perturbations merit special attention in the mitigation of diseases. While life table experiments allow a practical evaluation of variability of these traits with environmental change, they are cost and resource intensive. Here, we use a model snail host-trematode parasite system to test the efficacy of an expeditious alternative. Rapidly changing host traits (such as juvenile growth rate) can be used as effective predictors of parasite transmission potential across a range of environmental factors. This approach can be applied to anticipate epidemiological changes under diverse environmental scenarios.


Assuntos
Biomphalaria , Animais , Humanos , Biomphalaria/parasitologia , Schistosoma mansoni , Interações Hospedeiro-Parasita , Caramujos , Vetores de Doenças
12.
Trends Parasitol ; 38(11): 942-949, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36088213

RESUMO

The persistence of parasite populations through harsh seasonal bouts is often critical to circannual disease outbreaks. Parasites have a diverse repertoire of phenotypes for persistence, ranging from transitioning to a different life stage better suited to within-host dormancy to utilizing weather-hardy structures external to hosts. While these adaptive traits allow parasite species to survive through harsh seasons, it is often at survival rates that threaten population persistence. We argue that these periods of parasite (and vector) population busts could be ideal targets for disease intervention. As climate change portends abbreviated host dormancy and extended transmission periods in many host-parasite systems, it is essential to identify novel pathways to shore up current disease-intervention strategies.


Assuntos
Parasitos , Animais , Mudança Climática , Interações Hospedeiro-Parasita , Estações do Ano
13.
Proc Natl Acad Sci U S A ; 119(20): e2117381119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35533278

RESUMO

Parasitic infections are common, but how they shape ecosystem-level processes is understudied. Using a mathematical model and meta-analysis, we explored the potential for helminth parasites to trigger trophic cascades through lethal and sublethal effects imposed on herbivorous ruminant hosts after infection. First, using the model, we linked negative effects of parasitic infection on host survival, fecundity, and feeding rate to host and producer biomass. Our model, parameterized with data from a well-documented producer­caribou­helminth system, reveals that even moderate impacts of parasites on host survival, fecundity, or feeding rate can have cascading effects on ruminant host and producer biomass. Second, using meta-analysis, we investigated the links between helminth infections and traits of free-living ruminant hosts in nature. We found that helminth infections tend to exert negative but sublethal effects on ruminant hosts. Specifically, infection significantly reduces host feeding rates, body mass, and body condition but has weak and highly variable effects on survival and fecundity. Together, these findings suggest that while helminth parasites can trigger trophic cascades through multiple mechanisms, overlooked sublethal effects on nonreproductive traits likely dominate their impacts on ecosystems. In particular, by reducing ruminant herbivory, pervasive helminth infections may contribute to a greener world.


Assuntos
Helmintos , Parasitos , Animais , Ecossistema , Cadeia Alimentar , Herbivoria , Ruminantes , Simbiose
14.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35121663

RESUMO

Predicting and disrupting transmission of human parasites from wildlife hosts or vectors remains challenging because ecological interactions can influence their epidemiological traits. Human schistosomes, parasitic flatworms that cycle between freshwater snails and humans, typify this challenge. Human exposure risk, given water contact, is driven by the production of free-living cercariae by snail populations. Conventional epidemiological models and management focus on the density of infected snails under the assumption that all snails are equally infectious. However, individual-level experiments contradict this assumption, showing increased production of schistosome cercariae with greater access to food resources. We built bioenergetics theory to predict how resource competition among snails drives the temporal dynamics of transmission potential to humans and tested these predictions with experimental epidemics and demonstrated consistency with field observations. This resource-explicit approach predicted an intense pulse of transmission potential when snail populations grow from low densities, i.e., when per capita access to resources is greatest, due to the resource-dependence of cercarial production. The experiment confirmed this prediction, identifying a strong effect of infected host size and the biomass of competitors on per capita cercarial production. A field survey of 109 waterbodies also found that per capita cercarial production decreased as competitor biomass increased. Further quantification of snail densities, sizes, cercarial production, and resources in diverse transmission sites is needed to assess the epidemiological importance of resource competition and support snail-based disruption of schistosome transmission. More broadly, this work illustrates how resource competition can sever the correspondence between infectious host density and transmission potential.


Assuntos
Biomphalaria/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Schistosoma mansoni/patogenicidade , Esquistossomose mansoni/parasitologia , Caramujos/parasitologia , Animais , Humanos
15.
Appl Environ Microbiol ; 88(1): e0155021, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34669447

RESUMO

Many insects harbor microbial symbiotic partners that offer protection against pathogens, parasitoids, and other natural enemies. Mounting evidence suggests that these symbiotic microbes can play key roles in determining infection outcomes in insect vectors, making them important players in the quest to develop novel vector control strategies. Using the squash bug Anasa tristis, we investigated how the presence of Caballeronia symbionts affected the persistence and intensity of phytopathogenic Serratia marcescens within the insect vector. We reared insects aposymbiotically and with different Caballeronia isolates, infected them with S. marcescens, and then sampled the insects periodically to assess the intensity and persistence of pathogen infection. Squash bugs harboring Caballeronia consistently had much lower-intensity infections and cleared S. marcescens significantly faster than their aposymbiotic counterparts. These patterns held even when we reversed the timing of exposure to symbiont and pathogen. Taken together, these results indicate that Caballeronia symbionts play an essential role in S. marcescens infection outcomes in squash bugs and could be used to alter vector competence to enhance agricultural productivity in the future. IMPORTANCE Insect-microbe symbioses have repeatedly been shown to profoundly impact an insect's ability to vector pathogens to other hosts. The use of symbiotic microbes to control insect vector populations is of growing interest in agricultural settings. Our study examines how symbiotic microbes affect the dynamics of a plant pathogen infection within the squash bug vector Anasa tristis, a well-documented pest of squash and other cucurbit plants and a vector of Serratia marcescens, the causative agent of cucurbit yellow vine disease. We provide evidence that the symbiont Caballeronia prevents successful, long-term establishment of S. marcescens in the squash bug. These findings give us insight into symbiont-pathogen dynamics within the squash bug that could ultimately determine its ability to transmit pathogens and be leveraged to interrupt disease transmission in this system.


Assuntos
Burkholderiaceae , Heterópteros , Animais , Insetos , Serratia marcescens , Simbiose
16.
J Anim Ecol ; 91(1): 170-181, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34668575

RESUMO

Heterogeneities in infections among host populations may arise through differences in environmental conditions through two mechanisms. First, environmental conditions may alter host exposure to pathogens via effects on survival. Second, environmental conditions may alter host susceptibility, making infection more or less likely if contact between a host and pathogen occurs. Further, host susceptibility might be altered through acquired resistance, which hosts can develop, in some systems, through exposure to dead or decaying pathogens and their metabolites. Environmental conditions may alter the rates of pathogen decomposition, influencing the likelihood of hosts developing acquired resistance. The present study primarily tests how environmental context influences the relative contributions of pathogen survival and per capita transmission on host infection prevalence using the amphibian chytrid fungus (Batrachochytrium dendrobatidis; Bd) as a model system. Secondarily, we evaluate how environmental context influences the decomposition of Bd because previous studies have shown that dead Bd and its metabolites can illicit acquired resistance in hosts. We conducted Bd survival and infection experiments and then fit models to discern how Bd mortality, decomposition and per capita transmission rates vary among water sources [e.g. artificial spring water (ASW) or water from three ponds]. We found that infection prevalence differed among water sources, which was driven by differences in mortality rates of Bd, rather than differences in per capita transmission rates. Bd mortality rates varied among pond water treatments and were lower in ASW compared to pond water. These results suggest that variation in Bd infection dynamics could be a function of environmental factors in waterbodies that result in differences in exposure of hosts to live Bd. In contrast to the persistence of live Bd, we found that the rates of decomposition of dead Bd did not vary among water sources, which may suggest that exposure of hosts to dead Bd or its metabolites might not commonly vary among nearby sites. Ultimately, a mechanistic understanding of the environmental dependence of free-living pathogens could lead to a deeper understanding of the patterns of outbreak heterogeneity, which could inform surveillance and management strategies.


Assuntos
Quitridiomicetos , Micoses , Anfíbios/microbiologia , Animais , Micoses/epidemiologia , Micoses/microbiologia , Micoses/veterinária , Lagoas , Prevalência
17.
Acta Trop ; 225: 106226, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34752781

RESUMO

Vectors and intermediate hosts of globally impactful human parasites are sensitive to changes in the ecological communities in which they are embedded. Sites of endemic transmission of human schistosome can also be invaded by nonnative species, especially aquatic plants (macrophytes). We tested the effects on macrophyte invasions on experiment snail and schistosome populations created in 100 L mesocosm tanks. We established macrophyte-free mesocosms and those containing one of four widespread macrophyte species that are inedible to snails (duckweed, hornwort, water lettuce, or water hyacinth) and then tracked edible resources (periphyton algae) and the abundance, reproduction, and infection of snail intermediate hosts for 16 weeks. We predicted that the three floating macrophytes would reduce periphyton, thereby reducing snail reproduction, abundance, and infections. In contrast, we predicted that hornwort, which is submerged and provides substrate for periphyton growth, would increase snail reproduction and abundance. As predicted, all floating macrophytes decreased periphyton, but only water hyacinth significantly decreased snail reproduction and abundance. Snail abundance increased significantly only with water lettuce. We hypothesize that this unanticipated increase in snails occurred because water lettuce produced abundant and/or high quality detritus, subsidizing snails despite low periphyton availability. Unfortunately, we detected too few infections to analyze. Aquatic macrophytes exert strong species-specific effects on snail populations. Therefore, efforts to manage invasive plants in endemic sites should evaluate changes in resources, snails, and transmission potential. We recommend caution with management efforts that produce large amounts of detritus, which might stimulate snail populations and therefore risk of human exposure.


Assuntos
Biomphalaria , Plantas , Schistosoma mansoni , Animais , Biomphalaria/crescimento & desenvolvimento , Biomphalaria/parasitologia , Espécies Introduzidas , Dinâmica Populacional
19.
Ecology ; 102(7): e03383, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33950517

RESUMO

Parasites can harm hosts and influence populations, communities, and ecosystems. However, parasites are reciprocally affected by population- and community-level dynamics. Understanding feedbacks between infection dynamics and larger-scale epidemiological and ecological processes could improve predictions and reveal novel control methods. We evaluated how exploitative resource competition among hosts, a fundamental aspect of population biology, influences within-host infection dynamics of the widespread human parasite Schistosoma mansoni in its intermediate host, Biomphalaria glabrata. We added size-dependent consumption of shared resources to a parameterized bioenergetics model to predict a priori the growth, parasite production, and survival of an infected focal host coexisting with an uninfected conspecific competitor in an experiment that varied competitor size. The model quantitatively anticipated that competitors disrupt growth and parasite production and that these effects increase with competitor size. Fitting the model to these data improved its match to host survivorship. Thus, resource competition alters infection dynamics, there are strong size asymmetries in these effects, and size-asymmetric resource competition effects on infection dynamics can be accurately predicted by bioenergetics theory. More broadly, this framework can assess parasite transmission and control in other contexts, such as in resource competitive host communities, or in response to eutrophication, food supplementation, or culling.


Assuntos
Biomphalaria , Parasitos , Animais , Ecossistema , Interações Hospedeiro-Parasita , Humanos , Schistosoma mansoni , Caramujos
20.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836584

RESUMO

Temperature constrains the transmission of many pathogens. Interventions that target temperature-sensitive life stages, such as vector control measures that kill intermediate hosts, could shift the thermal optimum of transmission, thereby altering seasonal disease dynamics and rendering interventions less effective at certain times of the year and with global climate change. To test these hypotheses, we integrated an epidemiological model of schistosomiasis with empirically determined temperature-dependent traits of the human parasite Schistosoma mansoni and its intermediate snail host (Biomphalaria spp.). We show that transmission risk peaks at 21.7 °C (Topt ), and simulated interventions targeting snails and free-living parasite larvae increased Topt by up to 1.3 °C because intervention-related mortality overrode thermal constraints on transmission. This Topt shift suggests that snail control is more effective at lower temperatures, and global climate change will increase schistosomiasis risk in regions that move closer to Topt Considering regional transmission phenologies and timing of interventions when local conditions approach Topt will maximize human health outcomes.


Assuntos
Biomphalaria/fisiologia , Biomphalaria/parasitologia , Schistosoma mansoni , Esquistossomose mansoni/parasitologia , Esquistossomose mansoni/transmissão , Animais , Interações Hospedeiro-Parasita , Humanos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA